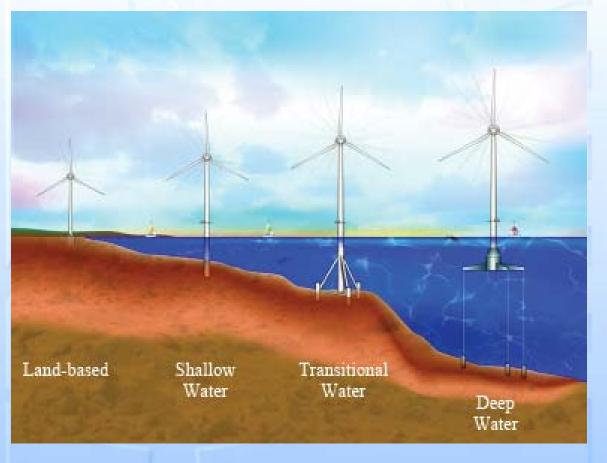

Offshore Wind Turbines: Design Considerations and the IEC 61400-3 Design Standards

James F. Manwell Professor and Director Univ. of Mass. Wind Energy Center

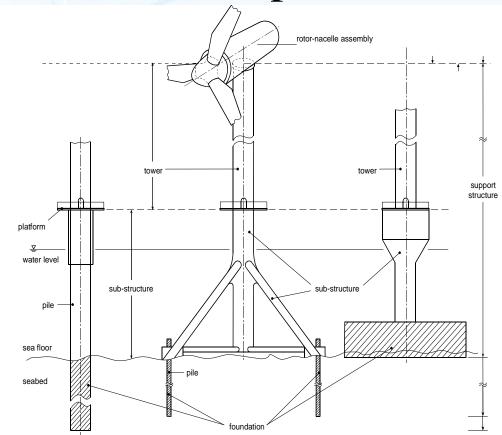
April 3, 2009


What are Offshore Wind Turbines?
According to IEC 61400-3 (Design Standards): "Offshore wind turbines are those wind turbines whose support structures are subject to <u>hydrodynamic</u> loading" That means waves!

Wind Energy Center Department of Mechanical and Industrial Engineering

Support Structures vs. Depth

Shallow < 30 m Transitional 30-60 m Deep > 60 m


Photo: National Renewable Energy Laboratory

University of Massachusetts

Wind Energy Center Department of Mechanical and Industrial Engineering Wind Turbine Support Structure for Shallow and Intermediate Depths

- Typical offshore wind turbine support structure options
- Type used will depend on seabed properties

Monopile Multimember Gravity University of Massachusetts

Department of Mechanical and Industrial Engineering

External Design Conditions

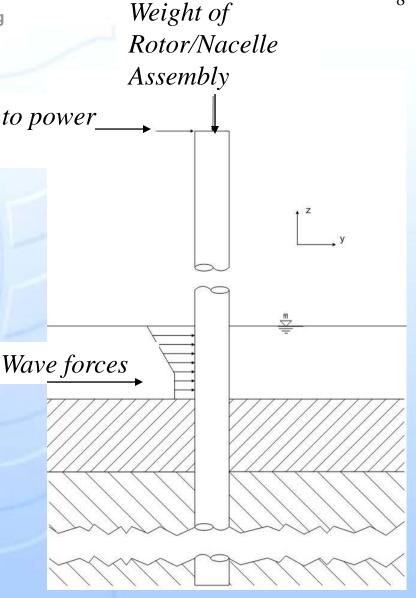
- Wind:
 - Power production
 - Rotor/nacelle assembly & support structure: extremes, fatigue
- Waves:
 - Support structure: extremes, fatigue
- Currents:
 - Support structure, rip-rap
- Ice:
 - Support structure
- Others:
 - Salinity, temperature

University of Massachusetts

Department of Mechanical and Industrial Engineering

Design Considerations

- Turbine size
- Support structure options
- Water depth
- Soil characteristics
- External design conditions
- Infrastructure (i.e. ship yards, vessels, etc.)
- Environmental concerns
- Maintainability
- Cost!

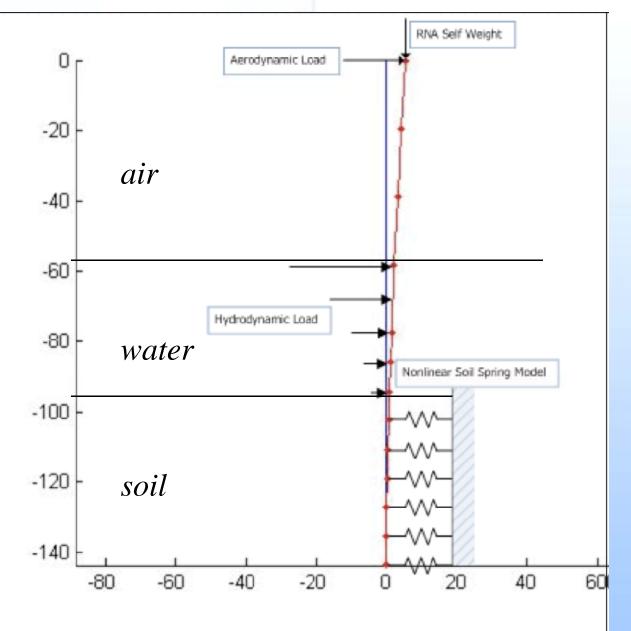


Wind Energy Center Department of Mechanical and Industrial Engineering

Monopile Structure

Thrust due to power_extraction

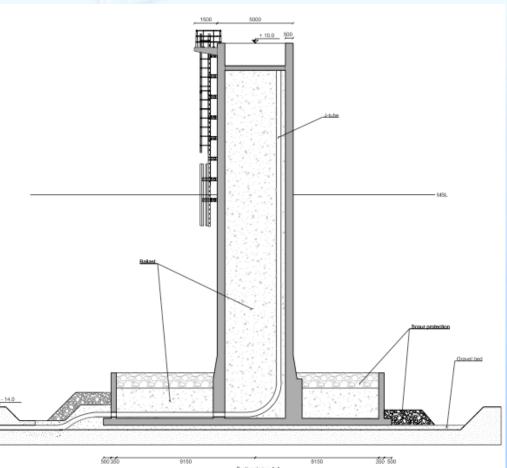
- Sediment thickness
- Lateral soil stiffness

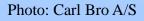


Department of Mechanical and Industrial Engineering

Wind Energy Center

Forces on the rotor/ nacelle assembly (RNA) and Support Structure




Department of Mechanical and Industrial Engineering

Gravity Structure

- Bearing capacity of soil
- Resistance to overturning
- Resistance to sliding
- Cost of steel vs. concrete

University of Massachusetts

Department of Mechanical and Industrial Engineering

Manufacture

Manufacture

- Gravity
 - Precast concrete or steel structure
 - Fabricate in dry dock

Department of Mechanical and Industrial Engineering

Manufacture

- Multimember
 - Tubular steel
 - Fabricated off site

Manufacture of Similar Structures (Offshore Oil & Gas)

Department of Mechanical and Industrial Engineering

Installation (1)

Pile driving

Installing tower

Lifting nacelle University of Massachusetts

Department of Mechanical and Industrial Engineering

Installation (2)

Wind Energy Center Department of Mechanical and Industrial Engineering. Installation

Gravity

- Remove soft surface material
- Place gravel layer
- Lower foundation with heavy lift vessel
- Fill with ballast

Multimember Structure Installation

- Place in seabed
- Secure to seabed with multiple piles

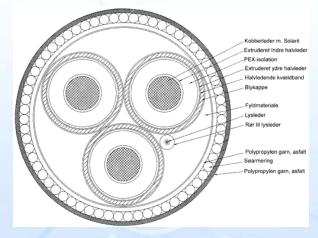
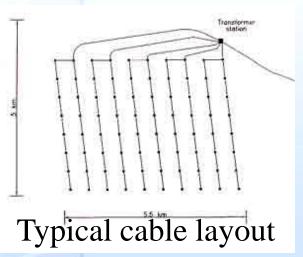


Photo: http://beatricewind.co.uk

Department of Mechanical and Industrial Engineering

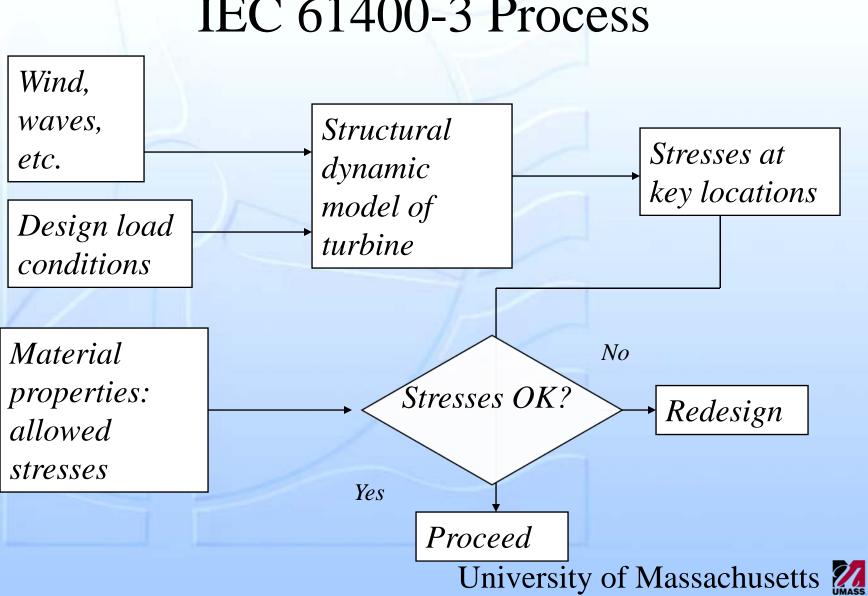

Electrical Cables

Cable cross section

Cable trencher University of Massachusetts **22**

Wind Energy Center Department of Mechanical and Industrial Engineering Offshore Wind Turbine Design Standards IEC 61400-3

- Background
 - IEC = International Electrotechnical Commission
 - IEC oversees all wind turbine standards (61400)
 - Standards ensure safety, financibility, insurability
 - Standards relate strength of structure to external conditions and design load conditions


IEC 61400-3 External Conditions

- Key external factors
 - Wind
 - Waves
 - Other (currents, salinity, floating ice, ...)
- Values chosen to find:
 - Normal loads, extreme loads, fatigue loads
 - Under Design Load conditions

Department of Mechanical and Industrial Engineering

IEC 61400-3 Process

Department of Mechanical and Industrial Engineering

Design Load Conditions

- Normal operation
- Start up/shut down
- Stationary in high winds
- Faults
- Transport
- Installation

Department of Mechanical and Industrial Engineering

Sample Design Load Cases

Table	1 –	Design	load	cases
-------	-----	--------	------	-------

Design situation	DLC	Wind condition	Waves	Wind and wave directionality	Sea currents	Water level	Other conditions	Type of analysis	Partial safety factor
1) Power production	1.1	NTM V _{in} < V _{hub} < V _{out} RNA	NSS H _s =E [H _s / V _{hub}]	COD, UNI	NCM	MSL	For extrapolation of extreme loads on the RNA	U	N (1,25)
	1.2	NTM V _{in} < V _{hub} < V _{out}	NSS Joint prob. distribution of <i>H</i> _s , <i>T</i> _p , <i>V</i> _{hub}	COD, MUL	No currents	NWLR or ? MSL		F	*
	1.3	ETM V _{in} < V _{hub} < V _{out}	NSS H _s =E [H _s / V _{hub}]	COD, UNI	NCM	MSL		U	Ν
	1.4	ECD $V_{hub} = V_r - 2 m/s, V_r,$ $V_r + 2 m/s$	NSS (or NWH) H _s =E [H _s / V _{hub}]	MIS, wind direction change	NCM	MSL		U	Ν

Conclusions

- OWT design affected by many factors
 - Water depth
 - Distance from shore
 - External design conditions (wind, waves, etc.)
 - Soil type
 - Turbine size, details
 - Available infrastructure
 - Costs
- IEC 61400-3 will help avoid problems!

University of Massachusetts **2**

